Rabu, 01 Juli 2015

© Manufacture of Butyl Oleat from Butanol & Oleic Acid

Butil oleat adalah senyawa ester yang pada keadaan normal berupa cairan yang sedikit bewarna kuning, sedikit berbau, tidak larut dalam air. Kegunaan butyl oleat adalah sebagai pelarut, bahan pelumas, water proofing dan sebagai plasticizer. Plasticizer adalah bahan yang berguna untuk menaikkan kemampuan kerja dan fleksibilitas plastik, penambahan plasticizer akan menurunkan visikositas leburan dan elastik plastik. Diperkirakan untuk masa yang akan datang kebutuhan plastik akan terus meningkat, dengan meningkatnya produksi plastik maka kebutuhan akan plasticizer juga meningkat. Di Indonesia, untuk memenuhi plasticizer terutama butyl oleat masih harus mengimpor, padahal Indonesia adalah Negara agraris yang memiliki sumber daya alam yang merupakan sumber utama bahan baku asam oleat.
Esterifikasi adalah reaksi pembentukan ester dari alkohol dan asam. Berdasarkan hasil penelitian yang dilakukan oleh Bertelot dan St. Gilles pada tahun 1862, diketahui secara umum reaksi esterifikasi adalah reaksi kesetimbangan yang berjalan bolak balik (reversible) sehingga reaksi ini tidak dapat terjadi secara komplit (Kick & Othmer, 1978).
Dari uraian diatas, maka agar produk esterifikasi lebih besar dan reaksi bergeser ke kanan (produk), perlu dilakukan usaha-usaha baik secara thermodinamika maupun secara kinetika. Secara thermodinamika usaha-usaha yang dilakukan adalah dengan mengatur suhu dan tekanan operasi, salah satu pereaksi dibuat berlebihan untuk meningkatkan kualitas kontak antar reaktan, dan juga pengusiran salah satu hasil yaitu ester atau air. Sedangkan secara kinetika, usaha-usaha yang perlu dilakukan adalah dengan penambahan katalisator dan reaktan diusahakan mempunyai kemurnian yang tinggi.
Katalisator yang digunakan antara lain adalah asam-asam kuat seperti resin sulfonat dan asam khlorida. Bahan-bahan lain seperti silika gel dan kation exchanger, resin juga sudah banyak digunakan. Pada skala laboratorium umumnya digunakan asam sulfat dan asam khlorida, tetapi pada skala pabrik lebih menguntungkan digunakan kation exchanger resin seperti amberlyte.

REAKSI KIMIA


Reaksi esterifikasi asam oleat dan butanol membentuk butyl oleat terjadi dalam fase cair. Diperlukan katalisator untuk mempercepat terjadinya reaksi. Katalisator yang digunakan berupa senyawa asam kuat inorganic seperti asam sulfat, asam chloride atau pun asam sulfat yang berupa larutan; bisa juga menggunakan asam yang berbentuk padat berupa an acidic ion exchance catalyst seperti resin sulfonat dengan nama dagang yang macam-macam.
Jika menggunakan katalisator berupa larutan asam cair maka reactor yang digunakan adalah reactor alir tangki berpengaduk (RATB/CSTR), sedangkan jika yang digunakan katalisator padat maka reactor yang digunakan reactor fixedbed adiabatic (single tube).
Jika menggunakan katalisator asam cair, maka hasil reaksi yang keluar dari reactor harus masuk ke tangki penetral untuk menentralkan katalisator asam yang ada dengan senyawa basa, dan juga Decanter untuk memisahkan larutan garam yang terbentuk dengan larutan organic yang tidak saling melarut atau kelarutannya kecil. Kerugian yang bisa terjadi adalah sisa reaktan yang berupa asam organic bisa ikut dinetrlkan oleh basa sehingga akan menambahh kebutuhan bahan baku asam organic.
Jika menggunakan katalisator padat, maka hasil reaksi yang keluar dari reactor bisa langsung diumpankan ke dalam Decanter untuk memisahkan air yang terbentuk selama reaksi.

Persamaan reaksi kimia :
                        
C17H33COOH   +  C4H9OH       ===>     C17H33COOC4H9  +  H2O
 (asam oleat)           (butanol)                         (butyl oleat)

Asam oleat bereaksi dengan butanol membentuk butyl oleat terjadi pada suhu 120°C dan tekanan atmospheris. Untuk konversi 90% dengan menggunakan reactor RATB diperlukan 2 buah reactor yang disusun seri dengan waktu tinggal dalam masing-masing reactor sekitar 1,5 jam. Penggunaan reactor fixedbed adiabatic akan lebih efektif karena waktu tinggal akan lebih singkat dan tidak diperlukan pendinginan meskipun reaksi bersifat eksotermis (mengeluarkan panas), karena kenaikan suhu reaksi sekitar 15°C malah akan memperbesar kecepatan reaksi.

Selasa, 30 Juni 2015

© Manufacture of Benzyl Alcohol from Benzyl Chloride and Na2CO3

Benzil alkohol adalah alkohol aromatik dengan rumus C6H5CH2OH dan mempunyai nama lain sebagai Phenylmethanol, Benzenemethanol, Phenylcarbinol, Benzenecarbinol, Phenylmethyl alcohol. Kelompok benzil sering disingkat "Bn" (tidak harus bingung dengan "Bz" yang digunakan untuk benzoil), sehingga alkohol benzil dilambangkan sebagai BnOH. Benzil alkohol adalah cairan tidak berwarna dengan bau aromatik yang menyenangkan ringan. Ini adalah pelarut yang berguna karena polaritas, toksisitas rendah, dan tekanan uap yang rendah. Benzil alkohol sebagian larut dalam air (4 g/100 mL) dan benar-benar larut dalam alkohol dan dietil eter.
Benzil alkohol diproduksi secara alami oleh banyak tanaman dan umumnya ditemukan dalam buah-buahan dan teh. Hal ini juga ditemukan dalam berbagai minyak esensial termasuk melati, hyacinth gondok, dan ylang-ylang. Hal ini juga salah satu senyawa kimia yang ditemukan dalam castoreum. Senyawa ini dikumpulkan dari tanaman pangan berang-berang.
Benzyl alcohol dan turunannya banyak ditemukan dalam berbagai bidang, seperti dalam pernis, pelapis, dan komposisi coating atau waterproofing. Benzyl alcohol juga digunakan sebagai bahan awal untuk pembuatan parfum. Benzil alkohol digunakan sebagai pelarut umum untuk tinta, cat, lak, dan coating resin epoxy. Ini juga merupakan prekursor untuk berbagai ester, yang digunakan dalam industri sabun, parfum, dan rasa.
Benzil alkohol digunakan sebagai pengawet bakteriostatik pada konsentrasi rendah dalam obat intravena, kosmetik dan obat-obatan topikal. Penggunaan benzil alkohol sebagai larutan 5% telah disetujui oleh FDA AS dalam pengobatan kutu kepala pada anak-anak yang lebih tua dari 6 bulan dan pada orang dewasa.
Benzil alkohol memiliki indeks refraksi yang hamper sama dengan kuarsa dan serat wol. Jika objek kuarsa bening direndam dalam benzyl alcohol, maka menjadi hampir tak terlihat. Ini telah digunakan sebagai metode non-destruktif untuk mengenali jika obyek benar terbuat dari kuarsa atau tidak (lihat tengkorak kristal). Demikian pula, wol putih direndam dalam benzyl alkohol  juga menjadi hampir tak terlihat dan jelas akan mengungkap kontaminan seperti serat gelap dan bagian tanaman.           
Sampai sekarang Benzyl alcohol dihasilkan dengan cara hidrolisis Benzyl chloride  dengan berbagai prosedur pembuatan. Secara umum hidrolisis dilakukan dengan adanyaalkali atau garam logam alkali tanah, seperti calcium chloride, calcium carbonat, sodium carbonat dan potassium carbonat.

REAKSI KIMIA


Benzyl alcohol dapat dihasilkan oleh reaksi hidrolisis benzyl chloride dengan menggunkana sodium carbonat. 
Reaksi yang terjadi dapat dituliskan dengan persamaan reaksi sebagai berikut  :

C6H5CH2Cl   +  Na2CO3 +  H2O    ===>   2  C6H5CH2OH  +  2  NaCl + CO2

Benzyl chloride dihydrolisis ke benzyl alcohol  pada suhu 100°C dengan 10-15%  larutan sodium carbonate pada tekanan atmospheris. Waktu tinggal dalam satu atau beberapa reactor yang bekerja secara kontinyus adalah beberapa jam tergantung pada suhu yang digunakan. Konversinya untuk teknologi yang terbaru bisa mencapai hampir 99,9%. Namun selama sisa reaktan  benzyl chloride dapat direcycle kembali maka konversi terhadap benzyl chloride tidak harus sangat besar.
Proses reaksi hidrolisis antara benzyl chloride dengan sodium carbonat yang dijalankan pada suhu 100°C tanpa katalisator. Reaksi bersifat eksotermis namun panas yang muncul tidak besar untuk konversi di bawah 80%, sehingga untuk menjaga suhu reaksi tetap sebesar 100°C bisa dilakukan pendinginan ataupun tidak. Jika tidak didinginkan kenaikan suhu reaksi tidak signifikan.
Menurut US Patent No.3557222 dan US Patent No. 4474993;  konversi bisa mencapai 99,9% dengan waktu tinggal hanya beberapa menit asal reaksi dijalankan pada suhu dan tekanan yang lebih tinggi. Jika dijalankan pada suhu 145°C maka tekanan operasinya sekitar 18 atm. Tekanan operasi dipilih sehingga fase reaksi tetap dalam kondisi cair bukan dalam bentuk gas.

Rabu, 31 Desember 2014

© Manufacture of Oxalic Acid from Molasses

Asam oksalat, HOOC-COOH, atau asam ethanedioat dengan berat molekul 90.04, adalah asam dicarboksilat paling sederhana. Ia larut dalam air dan berperan sebagai asam kuat. Dalam alam tidak ada asam oksalat dalam bentuk anhidrat dan secara komersial tersedia sebagai asam oksalat dihidrat, C2H2O4.2H2O, berat molekul 126.07. Produk komersial dikemas dalam karung polyethylene atau container yang fleksibel. Asam oksalat anhidrat dapat dibuat secara efisien dari dihidrat dengan distilasi azeotropik dalam solven dengan titik didih rendah yang dapat membentuk azeotrop air seperti benzene dan toluene.
Asam oksalat dibuat untuk pertama kali pada tahun 1776 oleh Scheele melalui oksidasi gula dengan asam nitrat. Kemudian Wuhler membuatnya dengan hidrolisis cyanogens pada 1824.
Garam potassium atau calcium asam oksalat terdistribusi secara luas dalam dunia pertanian. Nama ini diturunkan dari bahasa Yunani oxys, yang berarti tajam atau bersifat asam, mengacu pada sifat asam umum yang terdapat pada tanaman tertentu ( notabene Oxalis dan Rumex ) darimana dia diisolasi pertama kali. Tanaman lain yang mengandung asam oksalat adalah bayam, kelembak dan lainnya. Asam oksalat adalah hasil metabolisme jamur atau bakteri yang juga terjadi pada urine manusia dan hewan; garam calcium adalah bagian penting dari batuan ginjal.
Asam oksalat digunakan dalam  banyak industry, seperti proses dan pembuatan textile, treatment permukaan logam, penyamakan kulit, produksi cobalt, dan proses pemisahan dan pemulihan elemen tanah yang jarang. Asam oksalat juga dikonsumsi dalam produksi agrokimia, farmasi dan turunan kimia yang lain.
Asam Oksalat Anhidrat. Bentuk asam oksalat anhidrat Kristal bening dan tak berbau. Ada dua bentuk Kristal rhombic atau bentuk α dan monoklinik atau bentuk β. Kristal rhombik secara termodinamika stabil pada suhu ruang, tetapi bentuk monoklinik adalah metastabil atau slightly stable. Perbedaan utama antara bentuk rhombik dan monoklinik ada pada titik beku yaitu 189.5°C dan 182°C.
Asam oksalat anhidrat secara normal meleleh dan dekomposisi secara simultan pada 187°C. Sublimasi mulai di bawah 100°C dan semakin cepat pada 125°C; dekomposisi parsial selama sublimasi pada 157°C. Asam oksalat anhidrat adalah hidroskopis dan menyerap uap air di udara untuk membentuk dihidrat.
Asam oksalat anhidrat sangat larut dalam pelarut polar. Konstanta ionisasi K1 jika dibandingkan dengan asam mineral kebanyakan.
Asam Oksalat Dihidrat. Asam oksalat dihidrat berupa kristal bening dan tak berbau dengan bentuk prisma atau butiran  dengan kandungan asam oksalat anhidrat 71.42% dan 28.58% air. Saat asam oksalat dihidrat dipanaskan hati-hati sampai 100°C maka akan kehilangan air dan menjadi asam oksalat anhidrat. Sebaliknya jika dipanaskan secara cepat maka akan meleleh pada suhu 101.5°C.
Asam oksalat dihidrat larut dalam air. Kelarutannya naik dengan kenaikan suhu. Asam oksalat anhidrat sangat larut dalam pelarut polar, seperti methanol, ethanol, acetone, dioxane, dan tetrahydrofuran, tetapi tidak larut dalam benzene, chloroform dan ether. Kelarutan dihidrat dalam diethyl eter (1.47 g/100 g solven) berbeda dari bentuk anhidrat (23.6 g/ 100 g solven).

REAKSI KIMIA

Reaksi yang terjadi adalah sebagai berikut :

C6H12O6  + 12 HNO3     ====>     3 (COOH)2.2H2O     +   3 H2O + 3 NO   +  9 NO2
(glukosa)                                      (asam oksalat dihidrat)

Reaktor yang digunakan adalah reactor alir tangki berpengaduk (RATB/CSTR) berjumlah 3 yang disusun seri dengan waktu tinggal masing-masing reactor 45 menit. Reaksi oksidasi ini bersifat eksotermis (mengeluarkan panas) sehingga untuk menjaga suhu reaksi tetap 71°C diperlukan pendinginan. Pendingin yang digunakan adalah air pendingin yang dimasukkan ke dalam coil dan dicelupkan dalam reactor.   
Reaksi bisa berjalan dengan baik akan diperlukan katalisator vanadium pentoksid V2O5 dan juga asam sulfat. Asam sulfat yang diperlukan sebesar 11 kali mol glukosa umpan,  sedangkan V2O5 yang dibutuhkan sebesar 0,03% massa asam sulfat. Kondisi operasi di reactor suhu 71°C dengan tekanan operasi 1,2 atm dengan konversi glukosa bereaksi sebesar 86%.

© Manufacture of Oxalic Acid from Glukosa and HNO3

Asam oksalat, HOOC-COOH, atau asam ethanedioat dengan berat molekul 90.04, adalah asam dicarboksilat paling sederhana. Ia larut dalam air dan berperan sebagai asam kuat. Dalam alam tidak ada asam oksalat dalam bentuk anhidrat dan secara komersial tersedia sebagai asam oksalat dihidrat, C2H2O4.2H2O, berat molekul 126.07. Produk komersial dikemas dalam karung polyethylene atau container yang fleksibel. Asam oksalat anhidrat dapat dibuat secara efisien dari dihidrat dengan distilasi azeotropik dalam solven dengan titik didih rendah yang dapat membentuk azeotrop air seperti benzene dan toluene.
Asam oksalat dibuat untuk pertama kali pada tahun 1776 oleh Scheele melalui oksidasi gula dengan asam nitrat. Kemudian Wuhler membuatnya dengan hidrolisis cyanogens pada 1824.
Garam potassium atau calcium asam oksalat terdistribusi secara luas dalam dunia pertanian. Nama ini diturunkan dari bahasa Yunani oxys, yang berarti tajam atau bersifat asam, mengacu pada sifat asam umum yang terdapat pada tanaman tertentu ( notabene Oxalis dan Rumex ) darimana dia diisolasi pertama kali. Tanaman lain yang mengandung asam oksalat adalah bayam, kelembak dan lainnya. Asam oksalat adalah hasil metabolisme jamur atau bakteri yang juga terjadi pada urine manusia dan hewan; garam calcium adalah bagian penting dari batuan ginjal.
Asam oksalat digunakan dalam  banyak industry, seperti proses dan pembuatan textile, treatment permukaan logam, penyamakan kulit, produksi cobalt, dan proses pemisahan dan pemulihan elemen tanah yang jarang. Asam oksalat juga dikonsumsi dalam produksi agrokimia, farmasi dan turunan kimia yang lain.
Asam Oksalat Anhidrat. Bentuk asam oksalat anhidrat Kristal bening dan tak berbau. Ada dua bentuk Kristal rhombic atau bentuk α dan monoklinik atau bentuk β. Kristal rhombik secara termodinamika stabil pada suhu ruang, tetapi bentuk monoklinik adalah metastabil atau slightly stable. Perbedaan utama antara bentuk rhombik dan monoklinik ada pada titik beku yaitu 189.5°C dan 182°C.
Asam oksalat anhidrat secara normal meleleh dan dekomposisi secara simultan pada 187°C. Sublimasi mulai di bawah 100°C dan semakin cepat pada 125°C; dekomposisi parsial selama sublimasi pada 157°C. Asam oksalat anhidrat adalah hidroskopis dan menyerap uap air di udara untuk membentuk dihidrat.
Asam oksalat anhidrat sangat larut dalam pelarut polar. Konstanta ionisasi K1 jika dibandingkan dengan asam mineral kebanyakan.
Asam Oksalat Dihidrat. Asam oksalat dihidrat berupa kristal bening dan tak berbau dengan bentuk prisma atau butiran  dengan kandungan asam oksalat anhidrat 71.42% dan 28.58% air. Saat asam oksalat dihidrat dipanaskan hati-hati sampai 100°C maka akan kehilangan air dan menjadi asam oksalat anhidrat. Sebaliknya jika dipanaskan secara cepat maka akan meleleh pada suhu 101.5°C.
Asam oksalat dihidrat larut dalam air. Kelarutannya naik dengan kenaikan suhu. Asam oksalat anhidrat sangat larut dalam pelarut polar, seperti methanol, ethanol, acetone, dioxane, dan tetrahydrofuran, tetapi tidak larut dalam benzene, chloroform dan ether. Kelarutan dihidrat dalam diethyl eter (1.47 g/100 g solven) berbeda dari bentuk anhidrat (23.6 g/ 100 g solven).

REAKSI KIMIA

Reaksi yang terjadi adalah sebagai berikut :

C6H12O6  + 12 HNO3     ====>     3 (COOH)2.2H2O     +   3 H2O + 3 NO   +  9 NO2
(glukosa)                                      (asam oksalat dihidrat)

Reaktor yang digunakan adalah reactor alir tangki berpengaduk (RATB/CSTR) berjumlah 3 yang disusun seri dengan waktu tinggal masing-masing reactor 45 menit. Reaksi oksidasi ini bersifat eksotermis (mengeluarkan panas) sehingga untuk menjaga suhu reaksi tetap 71°C diperlukan pendinginan. Pendingin yang digunakan adalah air pendingin yang dimasukkan ke dalam coil dan dicelupkan dalam reactor.   
Reaksi bisa berjalan dengan baik akan diperlukan katalisator vanadium pentoksid V2O5 dan juga asam sulfat. Asam sulfat yang diperlukan sebesar 11 kali mol glukosa umpan,  sedangkan V2O5 yang dibutuhkan sebesar 0,03% massa asam sulfat. Kondisi operasi di reactor suhu 71°C dengan tekanan operasi 1,2 atm dengan konversi glukosa bereaksi sebesar 86%.


Minggu, 16 November 2014

© Manufacture of Stearic Acid from Palm Oil

Asam stearat adalah asam lemak jenuh dengan rantai 18-karbon dan memiliki nama IUPAC asam oktadekanoat. Ini adalah lilin yang padat, dan rumus kimia CH3(CH2)16CO2H. Namanya berasal dari kata Yunani στέαρ "Stear", yang berarti lemak. Garam dan ester dari asam stearat disebut stearates. Asam stearat adalah salah satu asam lemak jenuh yang paling umum ditemukan di alam diikuti asam palmitat.
Asam stearat  pada suhu  ruang berupa padatan/kristal  dengan warna putih. Asam ini  memiliki aroma yang khas. Ia sedikit larut dalam air, titik leburnya 69,6°C dan titik didihnya 376,1°C.
Sebagai komponen lemak, asam stearat terdapat di banyak lemak hewan dan sayuran dan minyak, tetapi lebih banyak lemak hewani (hingga 30%) dibandingkan lemak nabati (biasanya <5%). Pengecualian penting adalah lemak coklat, dimana kandungan asam stearat (sebagai trigliserida) adalah 28-45%. Asam stearat komersial seringkali campuran asam stearat dan palmitat, meskipun asam stearat murni tersedia. Trigliserida yang berasal dari tiga molekul asam stearat disebut stearin. Dalam hal biosintesis nya, asam stearat diproduksi dari karbohidrat melalui alat sintesa asam lemak.
Secara umum, aplikasi asam stearat mengeksploitasi karakter bifunctional, yaitu group polar yang dapat menyerang ke kation logam dan rantai nonpolar yang dapat larut dalam pelarut organik. Kombinasi ini mengarah ke penggunaan sebagai surfaktan dan agen pelunakan. Asam stearat mengalami reaksi khas asam karboksilat jenuh, yang menonjol reduksi menjadi stearil alkohol, dan esterifikasi dengan berbagai alkohol. Hal ini digunakan dalam berbagai macam manufactures, dari yang sederhana sampai perangkat elektronik yang kompleks.
Asam stearat terutama digunakan dalam produksi deterjen, sabun, dan kosmetik seperti sampo dan produk krim cukur. Sabun tidak dibuat langsung dari asam stearat, namun secara tidak langsung dengan saponifikasi trigliserida yang terdiri dari ester asam stearat. Ester asam stearat dengan etilena glikol, glikol stearat, dan glikol distearat digunakan untuk menghasilkan efek mutiara dalam shampoo, sabun, dan produk kosmetik lainnya. Mereka ditambahkan ke produk dalam bentuk cair dan dibiarkan mengkristal dalam kondisi yang terkendali. Deterjen yang diperoleh dari amida dan kuarteneri alkylammonium turunan dari asam stearat.
Mengingat tekstur yang lembut dari garam natrium, yang merupakan komponen utama dari sabun, garam lainnya juga berguna untuk sifat pelumas mereka. Lithium stearat merupakan komponen penting dari pelumas. Garam stearat seng, kalsium, kadmium, dan timbal yang digunakan untuk melunakkan PVC. Asam stearat digunakan bersama dengan minyak jarak untuk mempersiapkan pelembut dalam tekstil. Mereka dipanaskan dan dicampur dengan potas api atau soda kaustik. Garam terkait juga sering digunakan sebagai agen pelepas, misalnya dalam produksi ban mobil.
Asam lemak merupakan komponen klasik pembuatan lilin. Asam stearat digunakan bersama dengan gula sederhana atau sirup jagung sebagai pengeras dalam permen. Asam stearat digunakan untuk menghasilkan suplemen makanan. Dalam kembang api, asam stearat sering digunakan untuk serbuk logam mantel seperti aluminium dan besi. Hal ini untuk mencegah oksidasi, sehingga komposisi dapat disimpan untuk jangka waktu yang lama. Asam stearat merupakan pelumas umum selama injection molding dan menekan bubuk keramik. Hal ini juga digunakan sebagai pelepas cetakan untuk busa lateks yang dipanggang dalam cetakan batu.  

Senin, 03 November 2014

© Manufacture of Palmitic Acid from Palm Oil


        Asam palmitat, atau disebut asam heksadekanoat dalam nomenklatur IUPAC, adalah asam lemak yang paling umum ditemukan pada hewan, tumbuhan dan mikroorganisma. Rumus kimianya adalah CH3(CH2)14COOH. Seperti yang ditunjukkan oleh namanya, itu adalah komponen utama minyak dari pohon kelapa (kelapa sawit, inti sawit, dan minyak inti sawit), tetapi juga dapat ditemukan dalam daging, keju, mentega, dan produk susu. Palmitat adalah istilah untuk garam dan ester dari asam palmitat. Anion palmitat adalah bentuk asam palmitat pada pH fisiologis (7,4). 
Garam Aluminium asam palmitat dan asam naftenat digabungkan selama Perang Dunia II untuk menghasilkan napalm. Kata "napalm" berasal dari kata asam naftenat dan asam palmitat.
Asam palmitat terutama digunakan untuk memproduksi sabun, kosmetik, dan agen rilis. Aplikasi ini memanfaatkan natrium palmitat, yang umumnya diperoleh melalui saponifikasi minyak sawit. Untuk tujuan ini, minyak kelapa sawit ditreatment dengan natrium hidroksida (dalam bentuk soda kaustik atau lye), yang menyebabkan hidrolisis kelompok ester dalam minyak sawit. Prosedur ini menghasilkan gliserol dan natrium palmitat. 
      Karena murah dan menambah tekstur makanan olahan (kenyamanan makanan), asam palmitat dan garam natrium palmitat ditemukan digunakan secara luas dalam bahan makanan. Natrium palmitat diizinkan sebagai aditif alami dalam produk organik. Hidrogenasi asam palmitat menghasilkan setil alkohol, yang digunakan untuk memproduksi deterjen dan kosmetik. 
     Baru-baru ini, sebuah obat antipsikotik long-acting, paliperidone palmitat (dipasarkan sebagai INVEGA Sustenna), digunakan dalam pengobatan skizofrenia, telah disintesis menggunakan ester palmitat berminyak sebagai media rilis pembawa long-acting ketika disuntikkan ke dalam intramuskular. Metode yang mendasari pemberian obat mirip dengan yang digunakan dengan asam dekanoat untuk memberikan obat depot long-acting, khususnya, neuroleptik sebagai haloperidol dekanoat.

REAKSI KIMIA

    Asam palmitat dapat dihasilkan dari fraksinasi asam lemak  yang diperoleh dari proses pengubahan minyak menjadi asam lemak. Dalam hal ini proses yang digunakan adalah proses hidrolisis. Asam palmitat pada suhu ruang berupa padatan/kristal  dengan warna putih. Asam ini  memiliki aroma yang khas. Ia sedikit larut dalam air, titik leburnya 63°C dan titik didihnya 352°C.

Reaksi hidrolisis antara trigliserida dengan air sebagai berikut:

      C3H8(COOR) 3(l)  + 3 H2O(l)    ====>     C3H8O3(l)    + 3 RCOOH(l)  

Secara umum terdapat 2 metode umum yang dapat digunakan untuk hidrolisis minyak sawit membentuk asam minyak, yaitu :

1).Metode dengan katalisator
     Reaksi hidrolisis dapat dijalankan pada tekanan atmosferis dengan bantuan katalisator asam sulfat H2SO4 pada suhu sekitar 100°C.  Konversi yang dicapai rendah dan proses pemisahan produk akan lebih sulit karena dibutuhkan alat tambahan untuk memisahkan asam sulfat yang ada.
                                                                                                                  ( Ernesto Bernardini, 1982 )
2).Metode tanpa katalisator
       Dengan kondisi operasi :
       Suhu : 190°C–255°C
       Tekanan : 45 atm
       Fase : Cair
      Reaksi hidrolisis dijalankan pada tekanan 45 atm dengan suhu operasi sekitar 250°C. Konversi hidrolisis dapat mencapai 98%. Dengan reaktor yang berbentuk kolom tinggi Splitting tower  maka akan langsung terpisahkan antara fase asam lemak fatty acid dengan fase gliserol-air. Untuk mendapatkan asam palmitat dari campurannya dengan asam lemak yang lainnya yang terdapat pada hasil hidrolisis, dilakukan dengan menara distilasi/fraksinasi yang dioperasikan pada tekanan vakum.
                                                                                                                    ( Ernesto Bernardini, 1982 )

Kamis, 30 Oktober 2014

© Manufacture of Oleic Acid from Palm Oil


Asam lemak adalah senyawa alifatik dengan gugus karboksil.  Bersama-sama dengan gliserol, merupakan penyusun utama minyak nabati atau lemak dan  merupakan bahan baku untuk semua lipida pada makhluk hidup. Asam ini mudah dijumpai dalam minyak masak (goreng), margarin, atau lemak hewan dan menentukan nilai gizinya. Secara alami, asam lemak bisa berbentuk bebas (karena lemak yang terhidrolisis) maupun terikat sebagai gliserida. Asam lemak dibedakan menjadi asam lemak jenuh dan asam lemak tak  jenuh. Asam lemak jenuh hanya memiliki ikatan tunggal di antara atom-atom  karbon penyusunnya, sementara asam lemak tak jenuh memiliki paling sedikit satu ikatan ganda di antara atom-atom  karbon  penyusunnya. Asam lemak tak jenuh dianggap bernilai gizi lebih baik karena lebih reaktif dan merupakan antioksidan di dalam tubuh. Salah satu jenis asam lemak tak jenuh adalah asam oleat, merupakan asam lemak tak jenuh yang paling banyak ditemukan di hampir seluruh bahan makanan baik hewani maupun nabati.
Asam oleat dinamakan demikian karena berasal dari olein, atau olive oil karena asam oleat merupakan komponen utama penyusun minyak zaitun. Asam oleat dapat dikategorikan sebagai asam lemak esensial yang berarti kehadirannya dibutuhkan oleh tubuh namun asam oleat tidak dapat diproduksi di dalam tubuh dan hanya bisa didapat melalui sumber eksternal tubuh.
Asam oleat  merupakan salah satu bahan dasar dan bahan antara  dalam industri kimia. Di Indonesia asam oleat digunakan dalam industri minuman, seperti pembuatan susu,  industri sabun dan deterjen,  kosmestik,  minyak goreng, dan   industri bahan makanan. Selain itu dalam turunannya asam oleat pada beberapa industri kimia juga digunakan sebagai plasticizers, solven, pelumas dan agent untuk pengolahan air.

REAKSI KIMIA

          Asam oleat dapat dihasilkan dari fraksinasi asam lemak  yang diperoleh dari proses pengubahan minyak menjadi asam lemak. Dalam hal ini proses yang digunakan adalah proses hidrolisis.  
Dalam industri asam oleat banyak digunakan sebagai  surface  active, emulsifier , dan dalam  produk - produk kosmetika. Asam oleat pada suhu  ruang berupa cairan kental  dengan warna kuning pucat atau  kuning kecokelatan. Asam ini  memiliki aroma yang khas. Ia tidak larut dalam air, titik leburnya 14°C dan titik didihnya 360°C.

Reaksi hidrolisis antara trigliserida dengan air  sebagai berikut:


      C3H8(COOR) 3(l)  + 3 H2O(l)    ====>     C3H8O3(l)    + 3 RCOOH(l)  

            Secara umum terdapat 2 metode umum yang dapat digunakan untuk hidrolisis minyak sawit membentuk asam minyak, yaitu :
1)   Metode dengan katalisator
Reaksi  hidrolisis dapat dijalankan pada tekanan atmosferis dengan bantuan katalisator asam sulfat H2SO4  pada suhu sekitar 100°C.  Konversi yang dicapai rendah dan proses pemisahan produk akan lebih sulit karena dibutuhkan alat tambahan untuk memisahkan asam sulfat yang ada.
 ( Ernesto Bernardini, 1982 )
  2)  Metode tanpa katalisator
Dengan kondisi operasi :
      Suhu                : 190°C – 255°C
      Tekanan           : 45 atm
      Fase                 : Cair
      Reaksi  hidrolisis dijalankan pada tekanan 45 atm dengan suhu operasi sekitar 250°C. Konversi hidrolisis dapat mencapai 98%. Dengan reaktor yang berbentuk kolom tinggi Splitting tower  maka akan langsung terpisahkan antara fase asam lemak fatty acid dengan fase gliserol-air. Untuk mendapatkan asam oleat dari campurannya dengan asam lemak yang lainnya yang terdapat pada hasil hidrolisis, dilakukan dengan menara distilasi/fraksinasi yang dioperasikan pada tekanan vakum.

( Ernesto Bernardini, 1982 )